mark :: blog

<< prev [ 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 ] next >>


And not because she's set the alarm for the wrong time, or used a 'crazy frog' sound theme, but because it had a remote root exploit. It's fixed now.

It all started when I bought her a Chumby for Christmas. A Chumby is a little bedside device that can act as an alarm clock as well as running flash-lite applets. What made it especially appealing is that you can write your own applets if you want, and the whole thing is Linux-based and designed to be hackable: they correctly abide by the GPL and have their sources available, you can build and install your own software, you can even enable ssh and have a remote shell if you want to. And with NTP the clock is always at the right time, since I really don't like having out-of-sync clocks around the house.

So it was time to connect another device to my wireless network: a device designed to be left on and permanently connected to the network, and having a connected microphone, in the bedroom. A quick look around the OS and I found that it had a web server accessible by default, and a pair of CGI scripts, written in shell script, running as root, that didn't correctly escape their input. (Hint: writing secure CGI scripts in shell is non-trivial).

With a bit of careful manipulation (to get around some character handling in the code) I had a remote root shell on a default Chumby and could stream audio from the microphone remotely. Oops. Not too big a deal though as it's unlikely you're going to have it directly connected to the internet, although with some social engineering, if you know someone with a Chumby, you could do a cunning cross-site scripting attack and get a reverse shell that way.

I contacted the Chumby folks and they dealt with this like an ideal vendor; acknowledging the issue, keeping in contact, and doing a security update. Good for them. I like this device and vendor so much I'm going to buy another Chumby, and a few colleagues from work are too.

But how many other devices do we connect to our networks without thinking about them, and how many folks outside of the security paranoid have properly secured and segmented wireless networks? I've got a IP wireless network CCTV camera and a VOIP phone system both which seem to be running Linux (and both which seem to have vulnerabilities) to worry about next although harder since both are closed systems which haven't released their source.

So for CVE database: CVE-2010-0418 is "Chumby One before 1.0.4 and Chumby Classic before 1.7.2 allows remote attackers to execute arbitrary commands via shell metacharacters in a carefully crafted request to the web interface". Reported 29 Dec 2009, vendor responded 29 Dec 2009, tested fix 3 Feb 2010, public and updates 4 Mar 2010.


The 2010 CWE/SANS Top 25 Most Dangerous Programming Errors was published today listing the most widespread issues that lead to software vulnerabilities.

During the creation and review of the list we spent some time to see how closely last years list matched the types of flaws we deal with at Red Hat. We first looked at all the issues that Red Hat fixed across our entire product portfolio in the 2009 calendar year and filtered out those that had the highest severity. All our 2009 vulnerabilities have CVSS scores, so we filtered on those that have a CVSS base score of 7.0 or above[1].

There were 22 vulnerabilities that matched, and we mapped each one to the most appropriate CWE. This gives us 11 flaw types which led to the most severe flaws affecting Red Hat in 2009:

CWECWE DescriptionCWE/SANS
top 25?
Number of
Vulnerabilities
CWE-476NULL Pointer DereferenceNo (on cusp)6
CWE-120Buffer Copy without Checking Size of InputYes3
CWE-129Improper Validation of Array Index Yes3
CWE-131Incorrect Calculation of Buffer Size Yes3
CWE-78OS Command InjectionYes1
CWE-285Improper Access Control (Authorization)Yes1
CWE-362Race ConditionYes1
CWE-330 Use of Insufficiently Random Values No (on cusp)1
CWE-590Free of Memory not on the HeapNo1
CWE-672Use of a Resource after Expiration or ReleaseNo (on cusp)1
CWE-772Missing Release of Resource after Effective LifetimeNo (on cusp)1

10 of the 11 CWE are mentioned in the 2010 CWE/SANS document, although 4 of them are on "the cusp" and didn't make it into the top 25.

This quick review shows us that 2009 was the year of the kernel NULL pointer dereference flaw, as they could allow local untrusted users to gain privileges, and several public exploits to do just that were released. For Red Hat, interactions with SELinux prevented them being able to be easily mitigated, until the end of the year when we provided updates. Now, in 2010, the upstream Linux kernel and many vendors ship with protections to prevent kernel NULL pointers leading to privilege escalation. So although 2009 was the year where CWE-476 mattered to Linux administrators, it didn't make the SANS/CWE top 25 as this flaw type should not lead to severe issues (as long as the protections remain sufficient).

Here is a breakdown with the complete data set to show the CVSS scores and packages affected:

CVECWEtop 25?CVSS
base
Fixed in
CVE-2008-5182 CWE-362Yes 7.2Red Hat Enterprise Linux 5 (kernel)
CVE-2009-0065 CWE-129Yes 8.3Red Hat Enterprise Linux 4,5,MRG (kernel)
CVE-2009-0692 CWE-120Yes 8.3Red Hat Enterprise Linux 3,4 (dhcp)
CVE-2009-0778 CWE-772No (on cusp) 7.1Red Hat Enterprise Linux 5 (kernel)
CVE-2009-0846 CWE-590No 9.3Red Hat Enterprise Linux 2.1, 3 (krb5) [2]
CVE-2009-1185 CWE-131Yes 7.2Red Hat Enterprise Linux 5 (udev)
CVE-2009-1385 CWE-129Yes 7.1Red Hat Enterprise Linux 3,4,5,MRG (kernel)
CVE-2009-1439 CWE-131Yes 7.1Red Hat Enterprise Linux 4,5,MRG (kernel)
CVE-2009-1579 CWE-78Yes 7.5Red Hat Enterprise Linux 3,4,5 (squirrelmail)
CVE-2009-1633 CWE-131Yes 7.1Red Hat Enterprise Linux 4,5,MRG (kernel)
CVE-2009-2406 CWE-120Yes 7.2Red Hat Enterprise Linux 5 (kernel)
CVE-2009-2407 CWE-120Yes 7.2Red Hat Enterprise Linux 5 (kernel)
CVE-2009-2692 CWE-476No (on cusp) 7.2Red Hat Enterprise Linux 3,4,5,MRG (kernel)
CVE-2009-2694 CWE-129Yes 7.5Red Hat Enterprise Linux 3,4,5 (pidgin)
CVE-2009-2698 CWE-476No (on cusp) 7.2Red Hat Enterprise Linux 3,4,5 (kernel)
CVE-2009-2848 CWE-672No (on cusp) 7.2Red Hat Enterprise Linux 3,4,5,MRG (kernel)
CVE-2009-2908 CWE-476No (on cusp) 7.2Red Hat Enterprise Linux 5 (kernel)
CVE-2009-3238 CWE-330No (on cusp) 7.8Red Hat Enterprise Linux 4,5,MRG (kernel)
CVE-2009-3290 CWE-285Yes 7.2Red Hat Enterprise Linux 5 (kvm)
CVE-2009-3547 CWE-476No (on cusp) 7.2Red Hat Enterprise Linux 3,4,5,MRG (kernel)
CVE-2009-3620 CWE-476No (on cusp) 7.2Red Hat Enterprise Linux 4,5,MRG (kernel)
CVE-2009-3726 CWE-476No (on cusp) 7.2Red Hat Enterprise Linux 5,MRG (kernel)

[1] NIST NVD rate vulnerabilities as "High" severity if they have a CVSS base score of 7.0-10.0. This ends up excluding flaws in web browsers such as Firefox which can have a maximum CVSS base score of 6.8.

[2] Red Hat Enterprise Linux 4 and 5 were also affected by this vulnerability, but with a lower CVSS base score of 4.3, due to the extra runtime pointer checking.


There have been quite a few stories over the last couple of weeks about the NULL character certificate flaw, such as this one from The Register.

The stories center around how open source software such as Firefox was able to produce updates to correct this issue just a few days after the Blackhat conference, while Microsoft still hasn't fixed it and are "investigating a possible vulnerability in Windows presented during Black Hat".

But the actual timeline is missing from these stories.

The NULL character certificate flaw (CVE-2009-2408) was actually disclosed by two researchers working independantly who both happened to present the work at the same conference, Blackhat, in July this year. Dan Kaminsky mentioned it as part of a series of PKI flaws he disclosed. Marlinspike had found the same flaw, but was able to demonstrate it in practice by managing to get a trusted Certificate Authority to sign such a malicious certificate.

The flaw was no Blackhat surprise; Dan Kaminsky actually found this issue many months ago and responsibly reported the issues to vendors including Red Hat, Microsoft, and Mozilla. We found out about this issue on 25th February 2009 and worked with Dan and some of the upstream projects on these issues in advance, so we had plenty of time to prepare updates and this is why we were able to have them ready to release just after the disclosure.


Red Hat Enterprise Linux 5.4 was released today, just over 7 months since the release of 5.3 in January 2009. So let's use this opportunity to take a quick look back over the vulnerabilities and security updates we've made in that time, specifically for Red Hat Enterprise Linux 5 Server.

Errata count

The chart below illustrates the total number of security updates issued for Red Hat Enterprise Linux 5 Server as if you installed 5.3, up to and including the 5.4 release, broken down by severity. I've split it into two columns, one for the packages you'd get if you did a default install, and the other if you installed every single package (which is unlikely as it would involve a bit of manual effort to select every one). For a given installation, the number of package updates and vulnerabilities that affected you will depend on exactly what you have installed or removed.

missing graph

So for a default install, from release of 5.3 up to and including 5.4, we shipped 51 advisories to address 166 vulnerabilities. 8 advisories were rated critical, 18 were important, and the remaining 25 were moderate and low.

Or, for all packages, from release of 5.3 to and including 5.4, we shipped 78 advisories to address 251 vulnerabilities. 9 advisories were rated critical, 28 were important, and the remaining 41 were moderate and low.

Critical vulnerabilities

The 9 critical advisories were for just 3 different packages. In all the cases below, given the nature of the flaws, ExecShield protections in RHEL5 should make exploiting these memory flaws harder.

  1. Seven updates to Firefox (February, March 4th, March 27th, April 21st, April 27th, June, July ) where a malicious web site could potentially run arbitrary code as the user running Firefox.
  2. An update to kdelibs (June), where a malicious web site could potentially run arbitrary code as the user running the Konqueror browser. kdelibs is not a default installation package.
  3. An update to the NSS library (July), where a service could present a malicious SSL certificate causing a heap overflow which could potentially run arbitrary code as the user running a browser such as Firefox.

Updates to correct all of these critical vulnerabilities were available via Red Hat Network either the same day, or up to one calendar day after the issues were public.

In fact for Red Hat Enterprise Linux 5 since release and to date, every critical vulnerability has had an update available to address it available from the Red Hat Network either the same day or the next calendar day after the issue was public.

Other significant vulnerabilities

Although not in the definition of critical severity, also of interest during this period were several NULL pointer dereference kernel issues. NULL pointer dereference flaws in the Linux kernel can often be easily abused by a local unprivileged user to gain root privileges through the mapping of low memory pages and crafting them to contain valid malicious instructions:

Red Hat Enterprise Linux since 5.2 has contained backported patches from the upstream Linux kernel to add the ability to restrict unprivileged mapping of low memory, designed to mitigate NULL pointer dereference flaws. However it was found that this protection was not sufficient, as a system with SELinux enabled is more permissive in allowing local users in the unconfined_t domain to map low memory areas even if the mmap_min_addr restriction is enabled. This is CVE-2009-2695 and will be addressed in a future kernel update.

Mitigations

Red Hat Enterprise Linux 5 shipped with a number of security technologies designed to make it harder to exploit vulnerabilities and in some cases block exploits for certain flaw types completely. From 5.3 to 5.4 there were three flaws blocked that would otherwise have required critical updates:

Previous updates

To compare these statistics with previous update releases we need to take into account that the time between each update is different. So looking at a default installation and calculating the number of advisories per month gives the results illustrated by the following chart:

missing graph

This data is interesting to get a feel for the risk of running Enterprise Linux 5 Server, but isn't really useful for comparisons with other versions, distributions, or operating systems -- for example, a default install of Red Hat Enterprise Linux 4AS did not include Firefox, but 5 Server does. You can use our public security measurement data and tools, and run your own custom metrics for any given Red Hat product, package set, timescales, and severity range of interest.

See also: 5.2 to 5.3, 5.1 to 5.2, and 5.0 to 5.1 risk reports.


In his Black Hat paper and presentation yesterday, Dan Kaminsky highlighted some more issues he has found relating to SSL hash collisions and other PKI flaws. The video of the presentationis online now, so I'm sure the PDF paper will follow shortly. Some of these issues affect open source software, and some parts have already been addressed, so here is a quick summary including CVE names of the applicable bits:

MD2 signature verification

The first issue is that many web browsers still accept certificates with MD2 hash signatures, even though MD2 is no longer considered a cryptographically strong algorithm. This could make it easier for an attacker to create a malicious certificate that would be treated as trusted by a browser. It turns out that there are not many valid MD2 hash certificates around any more, and the main one that does exist is at the trusted root level anyway (and there is actually no need for a crypto library to verify the self-signature on a trusted root). So most vendors have chosen to address this issue by disabling MD2 completely for certificate verification. This is allocated CVE name CVE-2009-2409 ( single name for all affected products).

There is no immediate panic to address this issue as a critical security issue, as in order for it to be exploited an attacker still has to create a MD2 collision with this root certificate; something that is as of today still a significant amount of effort.

My CVSS v2 base score for CVE-2009-2409 would be 2.6 (AV:N/AC:H/Au:N/C:N/I:P/A:N)

Differences in Common Name handling

This issue is about how Common Names are checked for validity by applications. For example if a server presents a certificate with two CN entries, how does the app validate those. Does it use the first one, the last one, or all of them?

Leading 0's in Common Name handling

The second issue is all about inconsistencies in the interpretation of subject x509 names in certificates. Specifically "issue 2b, subattack 1" is where a malicious certificate can contain leading 0's in the OID. The idea is that an attacker could add in some OID into a certificate that, when handled by the Certificate Authority, would appear to be some extension and ignored, but when handled by OpenSSL would appear to be the Common Name OID. So the attacker would present the certificate to a client application and it might think that the OID is actually a Common Name, and accept the certificate where it otherwise should not.

OID overflow in Common Name handling

"issue 2b, subattack 2" is where a malicious certificate can have a very large integer in the OID. The idea is that an attacker could add in some OID into a certificate that, when handled by the CA, would appear to be some extension and ignored, but when handled by OpenSSL would overflow and appear to be the Common Name OID. So the attacker would present the certificate to a client application using OpenSSL and it might think that the OID is actually a Common Name, and accept the certificate where it otherwise should not.

NULL bytes in Common Name handling

"issue 2, attack 2c" is regarding NULL terminators in a Common Name field. If an attacker is able to get a carefully-crafted certificate signed by a Certificate Authority trusted by a browser, the attacker could use the certificate during a man-in-the-middle attack and potentially confuse the browser into accepting it by mistake.

My CVSS v2 base score for CVE-2009-2408 would be 4.3 (AV:N/AC:M/Au:N/C:N/I:P/A:N)

OpenSSL 'compat mode' subject name injection

"issue 2d" is how the OpenSSL command line utility will output unescaped subject X509 lines to standard output. So if some utility runs the openssl application from the command line and parses the text output, and if an attacker can craft a malicious certificate in such a way they fool a CA into signing it, they could present it to the utility and possibly fool that utility into thinking fields were different to what they actually are, perhaps allowing the certificate to be accepted as legitimate.

OpenSSL ASN1 printing crash

Also mentioned in the paper is a flaw in the filtering modes when a two or four byte wide character set is asked to be filtered.

My CVSS v2 base score for CVE-2009-0590 would be 2.6 (AV:N/AC:H/Au:N/C:N/I:N/A:P)


From time to time I publish metrics on vulnerabilities that affect Red Hat Enterprise Linux. One of the more interesting metrics looks at how far in advance we know about the vulnerabilities we fix, and from where we get that information. This post is abstracted from the upcoming "4 years of Enterprise Linux 4" risk report

For every fixed vulnerability across every package and every severity in Enterprise Linux 4 AS in the first 4 years of its life, we determined if the flaw was something we knew about a day or more in advance of it being publicly disclosed, and how we found out about the flaw.

A graph showing the information sources

For vulnerabilities which are already public when we first hear about them we still track the source as it's a useful internal indicator on where the security response team should focus their efforts.

A graph showing the information sources

So from this data, Red Hat knew about 51% of the security vulnerabilities that we fixed at least a day in advance of them being publicly disclosed. For those issues, the average notice was 21 calendar days, although the median was much lower, with half the private issues having advance notice of 9 days or less.

A graph showing the information
                              sources


Red Hat Enterprise Linux 5.3 was released today, around 8 months since the release of 5.2 in May 2008. So let's use this opportunity to take a quick look back over the vulnerabilities and security updates we've made in that time, specifically for Red Hat Enterprise Linux 5 Server.

The chart below shows the total number of security updates issued for Red Hat Enterprise Linux 5 Server as if you installed 5.2, up to and including the 5.3 release, broken down by severity. I've split it into two columns, one for the packages you'd get if you did a default install, and the other if you installed every single package (which is unlikely as it would involve a bit of manual effort to select every one). So, for a given installation, the number of packages and vulnerabilities will probably be somewhere between the two.

missing graph

So for a default install, from release of 5.2 up to and including 5.3, we shipped 45 advisories to address 127 vulnerabilities. 7 advisories were rated critical, 21 were important, and the remaining 17 were moderate and low.

For all packages, from release of 5.2 to and including 5.3, we shipped 61 advisories to address 181 vulnerabilities. 7 advisories were rated critical, 28 were important, and the remaining 26 were moderate and low.

The 7 critical advisories were for just 3 different packages:

  1. Five updates to Firefox (July, July, September, November, December) where a malicious web site could potentially run arbitrary code as the user running Firefox. Given the nature of the flaws, ExecShield protections in RHEL5 should make exploiting these memory flaws harder.
  2. An update to Samba (May), where a remote attacker who can connect and send a print request to a Samba server could cause a heap overflow. The Red Hat Security Response Team believes it would be hard to remotely exploit this issue to execute arbitrary code due to the default enabled SELinux targeted policy and the default enabled SELinux memory protection tests. We are not aware of any public exploit for this issue.
  3. An update to OpenSSH (August), provided to mitigate an intrusion into certain Red Hat computer systems. The attacker was able to sign a small number of tampered packages but they were not distributed on the Red Hat Network. We classified this update as critical to ensure any tampered packages would be replaced with official packages.

Although not of critical severity, also of interest during this period were the spoofing attacks on DNS servers. We provided an update to BIND (July) adding source port randomization to help mitigate these attacks.

Updates to correct all of these critical vulnerabilities (as well as migitate the BIND issue) were available via Red Hat Network either the same day, or one calendar day after the issues were public.

In fact for Red Hat Enterprise Linux 5 since release and to date, every critical vulnerability has had an update available to address it available from the Red Hat Network either the same day or the next calendar day after the issue was public.

To compare this with the last updates we need to take into account that the time between each update is different. So looking at a default installation and calculating the number of advisories per month gives the following chart:

missing graph

Red Hat Enterprise Linux 5 shipped with a number of security technologies designed to make it harder to exploit vulnerabilities and in some cases block exploits for certain flaw types completely. For 5.2 to 5.3 there were two flaws blocked that would otherwise have required updates:

  1. A double-free flaw in unzip. The glibc pointer checking limited the exploitability of this issue to just a crash of unzip, a client application, which does not have security implications. No security update was needed.
  2. Two format string flaws in c++filt. The format string protection caused these issues to have no security implications. No security update was needed.

This data is interesting to get a feel for the risk of running Enterprise Linux 5 Server, but isn't really useful for comparisons with other versions, distributions, or operating systems -- for example, a default install of Red Hat Enterprise Linux 4AS did not include Firefox, but 5 Server does. You can use our public security measurement data and tools, and run your own custom metrics for any given Red Hat product, package set, timescales, and severity range of interest.

See also:5.1 to 5.2 risk report


Secunia collect some very interesting information about the patch state of Windows systems. Their results from 20,000 machines published yesterday were that over 98% of PCs were insecure, having at least one out-of-date application installed.

Actually this isn't surprising and is exactly what I'd expect; it's all down to third party applications.

Let's say you're browsing the web. It's more than likely that at some point you'll want to view some PDF files, watch some Flash content, or play a Java game. Those tasks are all dealt with by third party applications, although to the end user it's all part of the browser experience. Since your system is only as secure as its weakest link, you need to manage security updates for those third party applications just as carefully as you manage security updates for the rest of your system. That's why Adobe Reader, Java, Flash, and all the myriad of other applications you've installed in order to make your system useful have their own update mechanisms. Some applications on Windows will 'phone home' when they are run and check to see if they need to be updated, others deploy services that sit in the background looking for updates from time to time, others even check every time your system starts. Many don't get automated updates at all.

How do you deal with all that risk? I believe it's possible by providing an OS distribution which includes all the bits you'll likely need to make a useful computing environment, thereby taking away that update uncertainty. Red Hat ship several PDF viewers in our distributions for example, but we also ship (in an Extras channel) Adobe Reader. Our Security Response Team are monitoring for security issues in everything we ship, all the third party applications, and providing a single point of contact, a single notification system, and a single way to get the updates.

If Microsoft knew that say 25% of all their users installed Firefox, wouldn't they be better bundling it and providing their centralised automated updates for it, to reduce their customers overall risk? They do already bundle some third party applications, although it's been with mixed success as we found 3 years ago when they didn't provide security fixes for bundled Flash (ZDNet coverage).

This is, in part, why you've not seen me respond recently to the Vista security reports which compare vulnerability counts. In these reports they use a cut-down minimal Red Hat Enterprise Linux installation in order to make it look more like Windows for the comparisons. But this is completely backwards -- the fact that we're including and fixing the flaws using a common process in so much third party software is actually helping reduce the risk and protect real customers. For example we could easily cut our vulnerability count by shipping only one PDF viewer instead of four. But if we know that these other viewers are going to get installed by the customer anyway all we've done is to hide the vulnerability count elsewhere, and you've made the customers overall risk increase.

So it may seem counter-intuitive but we should ship as much third party applications (that we know people use) as we can, because a single managed security update and notification process will decrease a users overall risk. The fewer third party applications that users have to get from elsewhere and install and manage for themselves the better in my opinion.


Red Hat Enterprise Linux 5.2 was released last week, around 6 months since the release of 5.1 in November 2007. So let's use this opportunity to take a quick look back over the vulnerabilities and security updates we've made in that time, specifically for Red Hat Enterprise Linux 5 Server.

The graph below shows the total number of security updates issued for Red Hat Enterprise Linux 5 Server starting at 5.1 up to and including the 5.2 release, broken down by severity. I've split it into two columns, one for the packages you'd get if you did a default install, and the other if you installed every single package (which is unlikely as it would involve a bit of manual effort to select every one). So, for a given installation, the number of packages and vulnerabilities will probably be somewhere between the two.

missing graph

So for a default install, from release of 5.1 up to and including 5.2, we shipped 46 updates to address 119 vulnerabilities. 8 advisories were rated critical, 24 were important, and the remaining 14 were moderate and low.

For all packages, from release of 5.1 to and including 5.2, we shipped 62 updates to address 179 vulnerabilities. 9 advisories were rated critical, 29 were important, and the remaining 24 were moderate and low.

The nine critical updates were in five different packages:

  1. Four updates to Firefox (November, February, March, April) where a malicious web site could potentially run arbitrary code as the user running Firefox. Given the nature of the flaws, ExecShield protections in RHEL5 should make exploiting these memory flaws harder.
  2. An update to the GnuTLS library (May), where a remote attacker who can connect to a server making use of GnuTLS could cause a buffer overflow. In Red Hat Enterprise Linux 5, the CUPS print server uses GnuTLS.

  3. An update to MIT Kerberos (March), where a remote attacker who can conect to the krb5kdc or kadmind services could cause a buffer overflow.

  4. An update to OpenPegasus (January), where a remote attacker who can connect to OpenPegasus could cause a buffer overflow. The Red Hat Security Response Team believes that it would be hard to remotely exploit this issue to execute arbitrary code, due to the default SELinux targeted policy, and the default SELinux memory protection tests.

  5. Two updates to Samba (November, December) where a remote attacker who can connect to the Samba port could cause buffer overflows. In addition to ExecShield making this harder to exploit, the impact of any sucessful exploit would be reduced as Samba is constrained by an SELinux targeted policy (enabled by default).

Updates to correct all of these critical issues were available via Red Hat Network either the same day, or one calendar day after the issues were public.

To get a better idea of risk we need to look not only at the vulnerabilities but also the exploits written for those vulnerabilities. A proof of concept exploit exists publicly for one of the Samba flaws, CVE-2007-6015, but we are not aware of public exploits for any other of those critical vulnerabilities. Also of high risk was an important "zero-day" exploit affecting the Linux kernel where a local unprivileged user could gain root privileges. Red Hat Enterprise Linux 5.1 was affected and a fix was available two calendar days after public disclosure.

Red Hat Enterprise Linux 5 shipped with a number of security technologies designed to make it harder to exploit vulnerabilities and in some cases block exploits for certain flaw types completely. For the period of this study there were two flaws blocked that would otherwise have required updates:

  1. A double-free flaw in CUPS. The glibc pointer checking limited the exploitability of this issue to just a crash of CUPS and not the ability to execute arbitrary code. code execution. We still issued an update, as a remote attacker could trigger this flaw and cause CUPS to crash.
  2. An uninitialized pointer free flaw in unzip, caught by the glibc pointer checking. As exploitation of this flaw results in just a crash of a user application, no updates were needed.

This data is interesting to get a feel for the risk of running Enterprise Linux 5 Server, but isn't really useful for comparisons with other versions or distributions -- for example, a default install of Red Hat Enterprise 4AS did not include Firefox. You can get the results I presented above for yourself by using our public security measurement data and tools, and run your own custom metrics for any given Red Hat product, package set, timescales, and severities.

See also 5.0 to 5.1 risk report


ZoneMinder is an amazing Linux video camera security and surveillance application I use as part of my home automation system. ZoneMinder prior to version 1.23.3 contains unescaped PHP exec() calls which can allow an authorised remote user the ability to run arbitrary code as the Apache httpd user (CVE-2008-1381)

CVSS v2 Base Score 6.5 (AV:N/AC:L/Au:S/C:P/I:P/A:P)

This is really a moderate severity flaw because you need a remote attacker who has the ability to start/stop/control ZoneMinder, and you really should protect your ZoneMinder installation so you don't allow arbitrary people to control your security system. (Although I think at least one distributor package of ZoneMinder doesn't protect it by default, and you can find a few unprotected ZoneMinder consoles using a web search).

I discovered this because when we went on holiday early in April I forgot to turn down the heating in the house. Our heating system is controlled by computer and you can change the settings locally by talking to a Jabber heating bot (Figure 1). But remotely over the internet it's pretty locked down and the only thing we can access is the installation of ZoneMinder. So without remote shell access, and with an hour to spare at Heathrow waiting for the connecting flight to Phoenix, I figured the easiest way to correct the temperature was to find a security flaw in ZoneMinder and exploit it. The fallback plan was to explain to our house-minder how to change it locally, but that didn't seem as much fun.

So I downloaded ZoneMinder and took a look at the source. ZoneMinder is a mixture of C and PHP, and a few years ago I found a buffer overflow in one of the C CGI scripts, but as I use Red Hat Enterprise Linux exploiting any new buffer overflow with my ZoneMinder compiled as PIE definately wouldn't be feasible with just an hours work. My PHP and Apache were up to date too. So I focussed on the PHP scripts.

A quick grep of the PHP scripts packaged with ZoneMinder found a few cases where the arguments passed to PHP exec() were not escaped. One of them was really straightforward to exploit, and with a carefully crafted URL (and if you have authorization to a ZoneMinder installation) you can run arbitrary shell code as the Apache httpd user. So with the help of an inserted semicolon and one reverse shell I had the ability to remotely turn down the heating, and was happy.

I notified the ZoneMinder author and the various vendors shortly after and updates were released today (a patch is also available)


Figure 1: Local heating control

<< prev [ 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 ] next >>

Hi! I'm Mark Cox. This blog gives my thoughts on security work, open source, home automation, and other topics.